CMS HF measurements and implication to sPHENIX studies Gian Michele Innocenti, Yen-Jie Lee Massachusetts Institute of Technology (MIT) Brainstorming meeting for MVTX detector physics deliverable #### Introduction to heavy flavour physics Heavy quarks produced in high Q^2 processes at early stages of the collisions #### pPb: - test of cold nuclear matter effects - PDF modifications - saturation - final state effects - collective evolution (hydro?) #### pp: - test of pQCD calculations - reference for pA and AA measurements - role of MPI interactions #### Introduction to heavy flavour physics #### Heavy quark energy loss in PbPb: • collisional vs radiative component Flavour dependence energy loss: - $<\Delta E> \propto \alpha_s C_R q L^2$ - Dead cone effect: gluon radiation suppressed at small angles for massive quarks #### Collective behaviour: - v_n measurements to study collective behaviour of heavy quarks - charm recombination in medium? #### Overview of the CMS detector ### Primary vertex resolution in pp collisions https://arxiv.org/pdf/1405.6569.pdf ### Impact parameter resolution in pp collisions #### p_T resolution in PbPb collisions at 5 TeV ### key features for a successful HF experiment From our experience with CMS and LHC it is fundamental to have: - primary and secondary vertex resolution - good impact parameter resolution down to low p⊤ - Is PID fundamental for low p_T D mesons? CMS low pt results demonstrated that PID is important but is not strictly necessary - For low p_T physics, very big MB samples are clearly more important as shown by the comparison between CMS and ALICE results... ### PID ALICE performances ITS/TPC/TOF #### CMS low pt results without PID With very large samples (~2.5 billion MB events in pp and ~300M events in 0-100% PbPb) we can go down to very low p_{T.} We can actually do better (down to 1 GeV or lower) with more cut optimisation (machine learning techniques...) #### D⁰ triggers at High-Level-Trigger (HLT) # Events firing hardware jet triggers (Level-1) are selected L1 jet algorithm with online background subtraction # Tracks are reconstructed in software trigger system (HLT) for selected events Track seed p_T cut applied: - $p_T > 2 \text{ GeV for pp}$ - p_T > 8 GeV for PbPb #### D⁰ meson are reconstructed - Online D⁰ reconstruction - loose selection to reduce the rates based on D⁰ vertex displacement #### Performances of D⁰ triggers → pp efficiency reaches 100% right above its D⁰ p_T threshold → PbPb efficiency goes from ~90 to 100% depending on p_T ### A quick summary of our results ### D and B cross sections in pp collisions D⁰ at 5.02 TeV, |y|<1.0 B⁺ measurement at 5.02 TeV, |y|<2.4 D and B meson production cross sections well described by NLO calculations: - →D meson upper edge of FONLL calculations - \rightarrow B meson consistent with central values of FONLL at higher p_T , slightly higher for p_T <15 GeV ### B meson production in pPb collisions PRL 116 (2016) 032301 FONLL R_{pA} fully compatible with unity No sizeable modification as a function of rapidity → D R_{pA} and HF electron studies can give also complementary information! ### D⁰ meson R_{AA} at 5.02 TeV D⁰ R_{AA} measured from 2 to 100 GeV/c at central rapidity in 0-100% - → ~300 MB events recorded for low p_T analysis - → Dedicated triggers designed to perform full track reconstruction at HLT and to reconstruct and identify D⁰ meson events at HLT #### Exclusive B⁺ meson measurement in PbPb CMS B⁺ production in PbPb at central rapidity |y|<2.4 #### CMS-PAS-HIN-16-011 Strong suppression (R_{AA}~0.4) observed in 0-100% PbPb collision for p_T>7 GeV/c Well described by theoretical calculations that include radiative energy loss ### R_{AA} of non prompt J/ψ at 2.76 TeV CMS non prompt 1.6<|y|<2.4 CMS non prompt |y|<2.4 ATLAS non prompt |y|<2.9 Strong suppression observed for non prompt J/ ψ in PbPb collisions \rightarrow similar studies can be done in the c,b->electrons channel ### Flavour dependence at 5.02 TeV ### Flavour dependence at higher pt b-jet R_{AA} inclusive jet R_{AA} Same suppression for b-jets and inclusive jets at high p_T Mass difference negligible at high p_T ### Flavour dependence at higher pt b-jet R_{AA} inclusive jet R_{AA} NLO process: Gluon splitting → dominant at low opening angles Same suppression for b-jets and inclusive jets at high p_T Mass difference negligible at high p_T Large contribution of gluon splitting processes? In GSP case, we are not measuring the b-quark E_{loss} but to some "fat" gluon E_{loss} ### Di-b-jet measurement in PbPb at 5.02 TeV → In back-to-back events bb production via gluon splitting processes is negligible x_J distributions of di-b-jets significantly modified in central PbPb collisions! #### Di-b-jet measurement in PbPb at 5.02 TeV $$x_J = p_{T,2} / p_{T,1}$$ Same average asymmetry observed for inclusive jets! CMS-HIN-16-005 There is no significant difference in the suppression of inclusive and bjets even after excluding the contribution of gluon splitting processes #### D⁰ elliptic flow in PbPb collisions CMS-PAS-HIN-16-007 we need **charm quark diffusion** to describe the magnitude of the D meson v_2 ### Summary and conclusions CMS experiment showed to be an excellent detector for HF measurements thanks to: - excellent tracking and vertexing system - efficiency di-muon trigger system and capability to trigger on HF probes - possibility to run at very high luminosity and collect huge amount of MB - PID (that is still in possible in CMS with pixel) is important but not fundamental #### How can sPHENIX be complementary: - both low pT (flow, collectivity) and high pT (jet queching, flavour dependence) are still not completely understood. - sPhenix could collect huge amount of data to help solving both the puzzles - the possibility of having both data at LHC and RHIC energies is a unique opportunity to validate theoretical calculations that are now very well "tuned" at LHC. ## BACKUP ### heavy quark production mechanism #### LO process: Flavour Creation (FCR) → bb produced back-to-back in azimuthal plane and symmetric in p_T #### **NLO process: Flavour Excitation (FEX)** \rightarrow bb pairs produced asymmetric in p_T and with a broad opening angle #### NLO process: Gluon splitting_(GSP) - → produced with small opening angles and asymmetric in p_T - → bb are not involved in the hard scattering but produced later ### Reminder on HF energy loss produced early in the collision, they strongly interact with the deconfined medium → In-medium energy loss as a consequence of radiative and collisional processes. ## Flavour-dependence of radiative energy loss: - Larger for gluons than for quarks E.g. in BDMPS model [I] $<\Delta E> \propto \alpha_s \, C_R \, q \, L^2$ - Dead cone effect: gluon radiation suppressed at small angles for massive quarks $$\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$$ $$\rightarrow R_{AA}^{B} > R_{AA}^{D} > R_{AA}^{light}$$ (??) ### Heavy-flavours in pp and pPb collisions Heavy quarks produced in high Q² processes at early stages of the collisions #### pPb: - test of cold nuclear matter effects - PDF modifications - saturation - final state effects - collective evolution (hydro?) #### pp: - test of pQCD calculations - reference for pA and AA measurements #### Heavy-flavours in PbPb collisions #### Heavy quark energy loss in PbPb: • collisional vs radiative component #### Flavour dependence energy loss: - $<\Delta E> \propto \alpha_s C_R q L^2$ - Dead cone effect: gluon radiation suppressed at small angles for massive quarks #### **Collective behaviour:** - v_n measurements to study collective behaviour of heavy quarks - charm recombination in medium? ### Charmonia in heavy-ion collisions Charmonia are bound states of cc $$au_{ m formation}^{car{c}} \lesssim au_{ m formation}^{QGP} < au_{ m life}^{QGP} < au_{ m decay}^{ m quarkonium}$$ The presence of QGP should affect charmonia production (yield and kinematics) Less bounded states melts at lower temperature T^{diss} (1S) > T^{diss} (2S) > ... We should observe a hierarchy in the dissociation of different quarkonia states depending on their binding energies ### Charmonia in heavy-ion collisions Charmonia are bound states of cc $$au_{ m formation}^{car{c}} \lesssim au_{ m formation}^{QGP} < au_{ m life}^{QGP} < au_{ m decay}^{ m quarkonium}$$ The presence of QGP should affect charmonia production (yield and kinematics) Less bounded states melts at lower temperature T^{diss} (1S) > T^{diss} (2S) > ... But life is not that easy, charm (re)combination in the medium is expected to play a significant role at LHC! #### Bottomonia, a cleaner probe for the QGP Y(nS) states are less likely to be created via recombination! #### HF models overview | | Table 11: Comparative overview of | of the models for heavy-quark ener | gy loss or transport in the medium | described in the previous sections. | |--|-----------------------------------|------------------------------------|------------------------------------|-------------------------------------| |--|-----------------------------------|------------------------------------|------------------------------------|-------------------------------------| | Table 11: Comparative overview of the models for heavy-quark energy loss or transport in the medium described in the previous sections. | | | | | | | |---|--------------------|-----------------------|------------------------------|---------------|-------------------------------------|--| | Model | Heavy-quark | Medium modelling | Quark-medium | Heavy-quark | Tuning of medium-coupling | | | | production | | interactions | hadronisation | (or density) parameter(s) | | | Djordjevic et al. | FONLL | Glauber mode1 | rad. + coll. energy loss | fragmentation | Medium temperature | | | [511–515] | no PDF shadowing | nuclear overlap | finite magnetic mass | | fixed separately | | | | | no fl. dyn. evolution | | | at RHIC and LHC | | | WHDG | FONLL | Glauber model | rad. + coll. energy loss | fragmentation | RHIC | | | [459, 519] | no PDF shadowing | nuclear overlap | | | (then scaled with $dN_{ch}/d\eta$) | | | | | no fl. dyn. evolution | | | | | | Vitev et al. | non-zero-mass VFNS | Glauber model | radiative energy loss | fragmentation | RHIC | | | [422, 460] | no PDF shadowing | nuclear overlap | in-medium meson dissociation | | (then scaled with $dN_{ch}/d\eta$) | | | | | ideal fl. dyn. 1+1d | | | | | | | | Bjorken expansion | | | | | | AdS/CFT (HG) | FONLL | Glauber mode1 | AdS/CFT drag | fragmentation | RHIC | | | [624, 625] | no PDF shadowing | nuclear overlap | | | (then scaled with $dN_{ch}/d\eta$) | | | | | no fl. dyn. evolution | | | | | | POWLANG | POWHEG (NLO) | 2+1d expansion | transport with Langevin eq. | fragmentation | assume pQCD (or 1-QCD | | | [507–509, 585, 586] | EPS09 (NLO) | with viscous | collisional energy loss | recombination | U potential) | | | | PDF shadowing | fl. dyn. evolution | | | | | | MC@sHQ+EPOS2 | FONLL | 3+1d expansion | transport with Boltzmann eq. | fragmentation | QGP transport coefficient | | | [528-530] | EPS09 (LO) | (EPOS model) | rad. + coll. energy loss | recombination | fixed at LHC, slightly | | | | PDF shadowing | | | | adapted for RHIC | | | BAMPS | MC@NLO | 3+1d expansion | transport with Boltzmann eq. | fragmentation | RHIC | | | [537-540] | no PDF shadowing | parton cascade | rad. + coll. energy loss | | (then scaled with $dN_{ch}/d\eta$) | | | TAMU | FONLL | 2+1d expansion | transport with Langevin eq. | fragmentation | assume 1-QCD | | | [491, 565, 606] | EPS09 (NLO) | ideal fl. dyn. | collisional energy loss | recombination | U potential | | | | PDF shadowing | | diffusion in hadronic phase | | | | | UrQMD | PYTHIA | 3+1d expansion | transport with Langevin eq. | fragmentation | assume 1-QCD | | | [608–610] | no PDF shadowing | ideal fl. dyn. | collisional energy loss | recombination | U potential | | | Duke | PYTHIA | 2+1d expansion | transport with Langevin eq. | fragmentation | QGP transport coefficient | | | [587, 628] | EPS09 (LO) | viscous fl. dyn. | rad. + coll. energy loss | recombination | fixed at RHIC and LHC | | | | PDF shadowing | | | | (same value) | | | | | | | | | | [1506.03981] #### Our experimental tools ## Semi-leptonic electrons and muons from c and b quarks Displayed J/ ψ from B decays #### Fully reconstructed D meson decays: - $D^0 \rightarrow K^- + \pi^+$ - $D^+ \rightarrow K^- + \pi^+ + \pi^+$ - $D^{*+} \rightarrow D^0 + \pi^+$ - $D^+_s \rightarrow \varphi + \pi^+$ #### Our experimental tools #### Fully reconstructed B meson decays: - B⁺ \rightarrow J/ ψ K⁺ \rightarrow μ ⁺ μ ⁻ K⁺ - $B^0 \rightarrow J/\psi K^{0*} \rightarrow \mu^+ \mu^- K^+ \pi^-$ - $B_s \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$ #### tagged c- and b-jets - standard jet reconstruction - tagging based on the displacement with respect to the primary vertex # BB Δφ correlations #### NLO process: Gluon splitting (GSP) → produced with small opening angles and asymmetric in p_T $B\overline{B}$ correlations strongly affected by gluon splitting processes at low $\Delta\varphi$ Gluon splitting (GS) contribution not well modelled by most of the calculations \rightarrow GS contribution underestimated by models b # D⁰ production in pPb collisions ALICE D measurements at 5.02 TeV, |y|<0.5 ALICE, arXiv: 1605.07569 R_{pA} well described by Cold Nuclear Matter (CNR) models and consistent with unity at high $p_T!$ Not possible to discriminate between various models with current uncertainties # D⁰ meson R_{pA} at 5.02 TeV LHCb D⁰ measurement at 5.02 TeV in forward(F) and backward (B) region as a function of transverse momentum and rapidity R_{pA} and R_{FB} described by to NLO prediction that include EPS09 parametrisation of the nuclear PDFs # b-jet nuclear modification factor in pPb central rapidity rapidity CMS b-jet R_{pA} in bins of transverse momentum and pseudo-rapidity PYTHIA R_{pA} consistent with unity as a function of p_T and pseudo-rapidity backward CMS, PLB 754 (2016) 59 # Heavy flavour leptons: LHC vs. RHIC ALICE heavy flavour muons (c,b→muons) in pPb collisions at 5.02 TeV forward (shadowing) backward (anti-shadowing) Models with CNM describe forward/backward rapidity at LHC # Heavy flavour leptons: LHC vs. RHIC ALICE heavy flavour muons (c,b→muons) in pPb collisions at 5.02 TeV forward (shadowing) backward (anti-shadowing) Models with CNM describe forward/backward rapidity at LHC → Not possible at RHIC #### D meson RAA in 0-10% #### ALICE D⁰ R_{AA} |y|<0.5 at 2.76 TeV #### CMS D^0 R_{AA} |y|<1.0 at 5.02 TeV 25.8 pb⁻¹ (5.02 TeV pp) + 404 μ b⁻¹ (5.02 TeV PbPb) CMS Preliminary TAA and lumi. uncertainty Centrality 0-10% 0.8 کے |y| < 10.6 0.4 0.2 10^{2} p_T (GeV/c) CMS-PAS-HIN-16-001 Strong suppression at 2.76 TeV: same suppression for D⁰,D⁺,D^{*+} Similar suppression at 5.02 TeV: Rising trend observed when going to high p_T #### Comparison to theoretical calculations CMS-PAS-HIN-16-001 #### Several models describe the data within uncertainties: - hints at low p_T that collisional energy loss is non negligible - pure collisional models can describe the R_{AA} up to high p_T (??) - shadowing improve description of the data at low p_T ### D meson R_{AA} at 2.76 TeV Strong suppression in central PbPb events: same suppression for D^0,D^+,D^{*+} indicate independence from fragmentation **ALICE** and CMS in good agreement Differences at higher p_T due to different p_T references ## D⁰ meson R_{AA} at 5.02 TeV #### CMS D⁰ R_{AA} |y|<1.0 at 5.02 TeV Strong suppression observed at 5.02 TeV Rising trend observed when going to high p_T Similar suppression observed at 2.76 and 5.02 TeV by CMS and ALICE Caveat: different rapidities ### Flavour dependence of Eloss at 2.76 TeV **According to this model**, the difference R_{AA} for non prompt J/ψ and B can be attributed to a difference in the E_{loss} of charm and beauty quarks ### Flavour dependence of Eloss at 2.76 TeV CMS-PAS-HIN-15-005 Non-prompt J/ ψ D mesons π^{+-} No change in the physics message when comparing to the final result of non prompt J/ ψ R_{AA} from CMS ### Comparison with models we need **charm quark diffusion** to describe the magnitude of the D meson v_2 ! # Heavy-flavour muons at 2.76 TeV Positive v₂ for muons from heavy-flavour decays (b+c) at LHC: - include the contributions of beauty to v2 that is currently unknown - v₂ of heavy flavour muons < v₂ (D⁰) from ALICE ### Non-prompt J/ φ at 2.76 TeV vs B⁺ at 5.02 TeV The B⁺ R_{AA} at 5.02 TeV and non-prompt J/ φ at 2.76 fully compatible within uncertainties! BIG CAVEAT: different energies! #### Exclusive B-meson measurements Exclusive B mesons can span the full range and get closer to the parton kinematic! → Clean and high statistics sample collected by triggering on muons! # v_2 of non prompt J/ψ v_2 of non prompt J/ ψ in PbPb collisions at 2.76 TeV →Compatible within uncertainties with theoretical calculations Looking to see the new measurement with Run2 data with higher statistics! ## prompt and non prompt charmonia - Prompt component: affected by color screening and regeneration in the QGP - Nonprompt component: reflects E_{loss} of b quarks in the medium Separation of components based on **pseudo-proper decay length** $(\ell_{J/\psi})$: $$\ell_{ extstyle J/\psi}^{ extstyle J/\psi} = \mathcal{L}_{ extstyle xyz} \cdot rac{m_{ extstyle J/\psi}}{p_{\mu\mu}}$$ Ta-Wei Wang's talk (8th): nonprompt charmonia & full B reconstruction ## prompt and non prompt charmonia Two techniques to separate components: #### I. 2D fits of dimuon mass and pseudo-proper decay length #### 2. Rejecting nonprompt using a cut on $\ell_{ extsf{J/\psi}}$ (can be used with low stats: $\psi(2S)$ analyses) Correction (from data) to account for remaining nonprompt contamination: - Using reverted $\ell_{J/\psi}$ cut - MC efficiency of $\ell_{J/\psi}$ cut # ψ(2S)/J/ψ vs p_T - $R_{AA}(\psi(2S))/R_{AA}(J/\psi) < I$ in all bins $\rightarrow \psi(2S)$ is more suppressed than J/ψ - No p_T dependence within uncertainties - X. Du and R. Rapp: transport model with temperature dependent reaction rates $\rightarrow \Psi(2S)$ regenerated later than J/ Ψ in the fireball evolution? # ψ(2S) /J/ψ vs centrality 2.76 vs. 5.02 TeV CMS results vs centrality, p_T and rapidity can help to constrain the model: - Relative contribution of primordial and regenerated charmonia - Dissociation and regeneration rates - Temperatures at which J/ ψ and ψ (2S) regenerate • ... ## Comparison to theoretical calculations CMS non prompt 1.6<|y|<2.4 CMS non prompt |y|<2.4 arXiv:1610.00613, Submitted to Eur. Phys. J. C Strong suppression observed for non prompt J/ ϕ in PbPb collisions Clear suppression as a function of p_T